Algebra III

Semestral Examination

Instructions: \mathbb{R} , \mathbb{C} denote the real and complex numbers respectively. All rings are assumed to be commutative with unity. All questions carry equal marks.

- 1. Define an integral domain. Prove that a finite integral domain is a field. Give an example of an integral domain of order 25. Justify your answer.
- 2. Let $C(\mathbb{R})$ denote the ring of continuous functions on \mathbb{R} . Define a ring homomorphism $\phi : \mathbb{R}[X,Y] \to C(\mathbb{R})$ by sending X to $\sin(t)$ and Y to $\cos(t)$. Prove that the kernel of ϕ is principal and find its generator.
- 3. Define a free module over a ring R. Prove that if every module over a ring R is free, then it is a field.
- State the classification theorem for finitely generated abelian groups. Using the theorem, count the number of non-isomorphic groups of orders 100, 200 and 300.
- 5. Define noetherian rings. Prove that if R is a noetherian ring, then the polynomial ring R[X] is noetherian.
- 6. Explain how a linear operator $T:V\to V$ on a vector space V over a field F makes V an F[X]-module. Considering the linear transformation T(z,w)=(2z,z+w) on \mathbb{C}^2 , show that it is isomorphic to $\mathbb{C}[X]/< X^2-3X+2>$ as an $\mathbb{C}[X]$ -module.